

Introduction

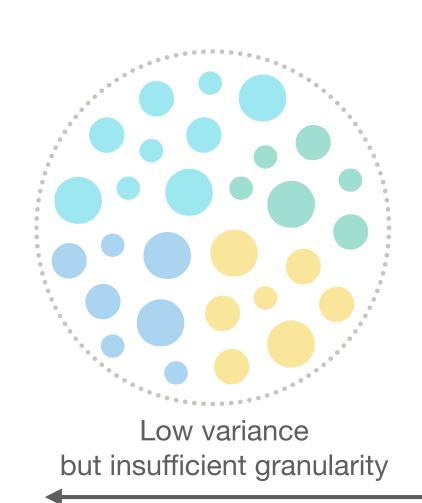
Standard conformal prediction (CP) methods are designed to take an input $X_{\text{test}} \in \mathscr{X}$ with unknown label $Y_{\text{test}} \in \mathscr{Y}$ (along with a labeled calibration set and a conformal score function $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$) and construct a prediction set $C(X_{\text{test}})$ that achieve marginal coverage for some small $\alpha > 0$:

 $P(Y_{\text{test}} \in C(X_{\text{test}})) \ge 1 - \alpha$

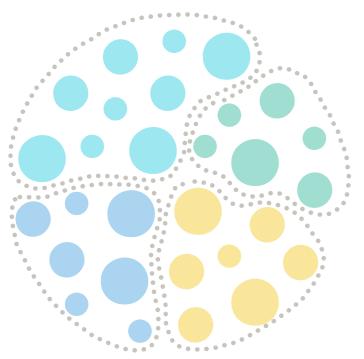
However, in many settings we want the stronger guarantee of class-conditional coverage:

 $P(Y_{\text{test}} \in C(X_{\text{test}}) \mid Y_{\text{test}} = y) \ge 1 - \alpha$

Goal: Create a conformal prediction method that achieves good class-conditional coverage even in settings with many classes or limited data.



Methods



Clustered conformal prediction

Fig I. Existing methods either (I) do not split data but are only designed to achieve marginal coverage, or (2) are designed to achieve class-conditional coverage but use data inefficiently. Our method, *clustered* conformal prediction, achieves the best of both worlds by grouping together data from classes with similar conformal score distributions.

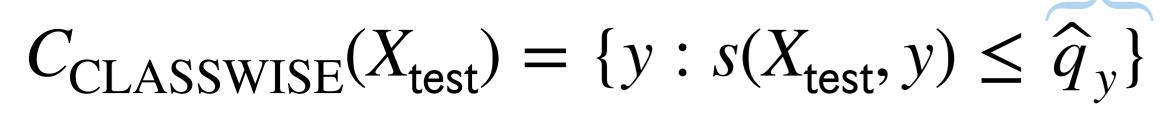
Standard CP:

Estimated on all calibration data

 $C_{\text{STANDARD}}(X_{\text{test}}) = \{y : s(X_{\text{test}}, y) \le \hat{q}^{\text{all}}\}$

Classwise CP:

clustering.



Clustered CP (ours):

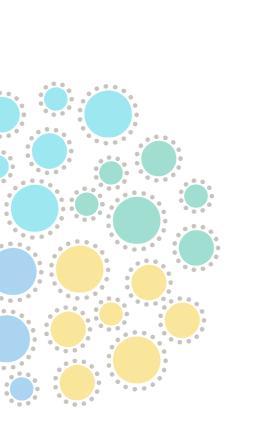
Estimated using data in cluster that contains class y

 $C_{\text{CLUSTERED}}(X_{\text{test}}) = \{y : s(X_{\text{test}}, y) \le \hat{q}(\hat{h}(y))\}$ where $\hat{h}: \mathcal{Y} \to [M] \cup \mathsf{null}$ is a clustering function learned by splitting off part of the calibration dataset, computing a quantile embedding for the data of each class, then performing k-means

Class-conditional conformal prediction with many classes Tiffany Ding, Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, Ryan J. Tibshirani

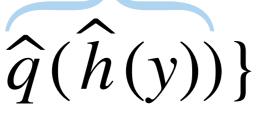
University of California, Berkeley

 $\forall y \in \mathcal{Y}$ (1)

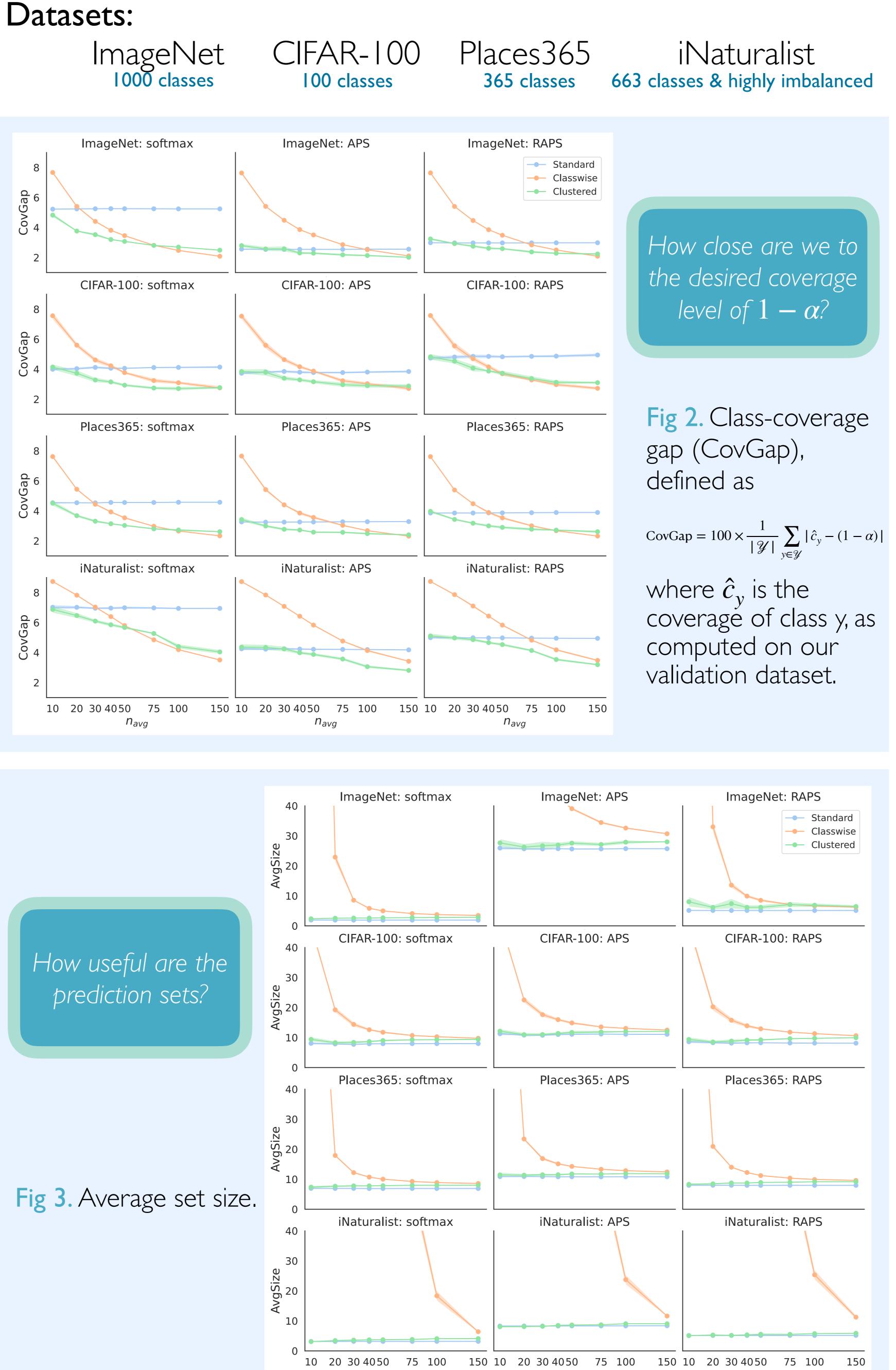


Sufficient granularity but high variance

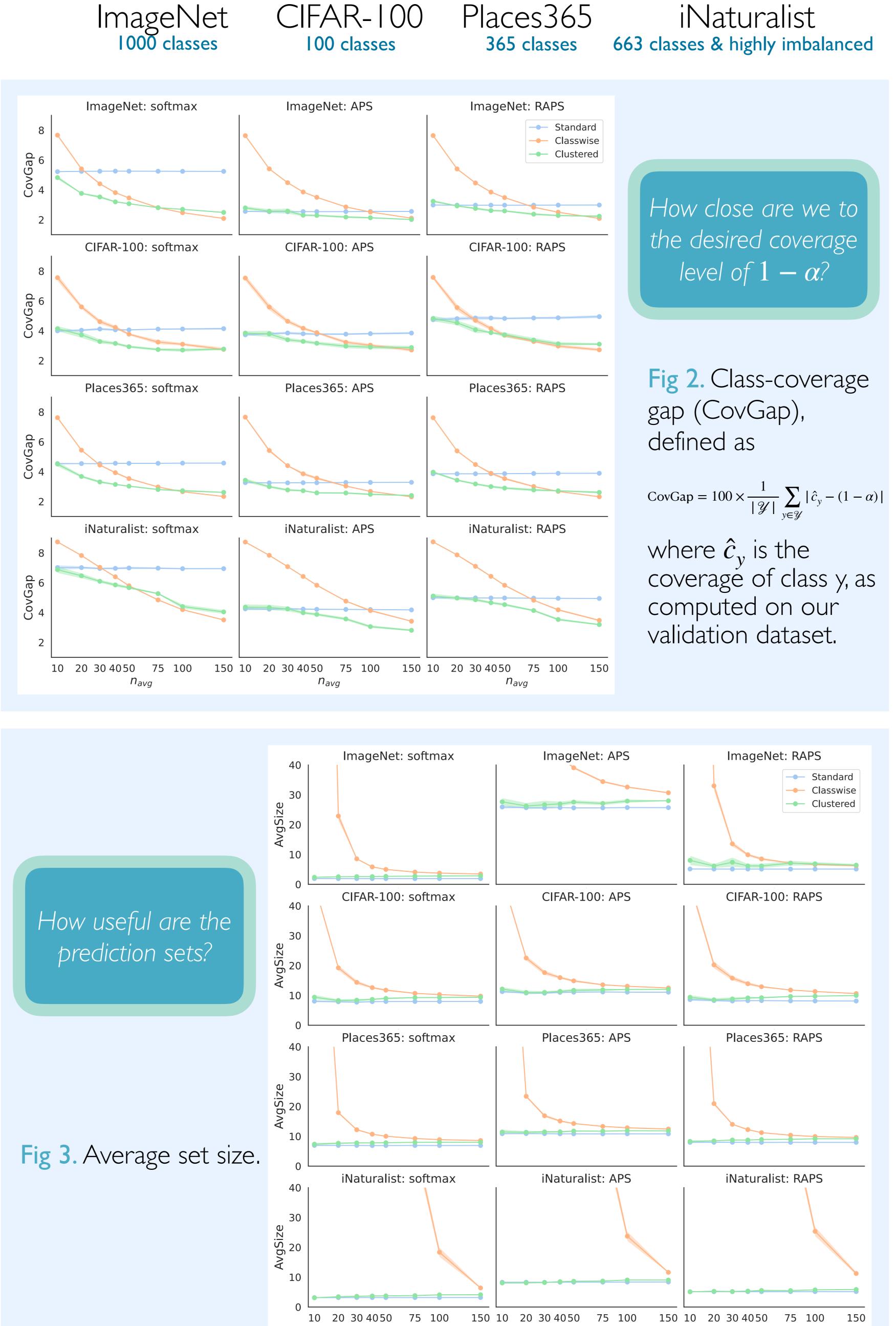
Estimated using only data for class y



Setup: We compare the performance of Standard, Classwise, and Clustered CP using the softmax, APS, and RAPS conformal score functions for various amounts of calibration data. $n_{\rm avg}$ is the average # of calibration examples per class.



n_{avg}



Experiments

Proposition I: (Under perfect clustering) Let h^* be an oracle clustering function such that all classes assigned to the same cluster have scores that are exchangeable. If $\hat{h} = h^*$, then $C_{\text{CLUSTERED}}$ will satisfy (1).

Proposition 2: (Under imperfect clustering) Suppose that the classes that \hat{h} assigns to the same cluster are almost exchangeable (formally, let S^y denote a random variable sampled from the score distribution for class y, and assume $D_{\mathrm{KS}}(S^{y}, S^{y'}) \leq \epsilon$ for all y, y' s.t. h(y) = h(y')), then $C_{\text{CLUSTERED}}$ will satisfy $P(Y_{\text{test}} \in C(X_{\text{test}}) \mid Y_{\text{test}} = y) \ge 1 - \alpha - \epsilon, \ \forall y \in \mathscr{Y}.$

For a given problem setting, what is the best way to produce prediction sets that have good class-conditional coverage but are not too large to be useful?

Standard CP

Avg # of examples per class

Extrem

Summary

Ι.	Marg
	we v
2.	Class
	there
3.	Clust
	allow
	that

Future directions? Generalizing our clustering approach to achieve group-conditional coverage for any grouping.

Theoretical guarantees

Practical takeaways

	Clustered CP	Clustered C	P
		Classwise C (if low class imbala	P Classwise CP nce)
nely low 10)	Low (20 - 75)	High (75 - 100)	Extremely high (>100 for every class)

Conclusion

ginal coverage is not enough. In many settings, want to have class-conditional coverage. ss-conditional coverage is hard to achieve when re are many classes and limited data per class. stering classes with similar score distributions ws us to share data between classes in a way will achieve good class-conditional coverage